
Evolving Robot Vision: Increasing Performance through Shaping
Simon Perkins

Los Alamos National Laboratory
Mail Drop D436

Los Alamos, NM 87545
s.perkins@ed.ac.uk

Abstract- Automated methods for designing robot con-
trollers based on machine-learning techniques have shown
great promise when applied to simple robot tasks, but in
order to ‘scale up’ to more complicated problems they will
require assistance from human experts, a process that is
often called ‘robot shaping’. In this paper, the difficult
problem of learning how to visually track moving objects
is examined. It is shown that through the use of shap-
ing techniques, this intractable learning problem can be
made soluble. Controllers are evolved in simulation and
then transferred to a real robot.

1 Introduction

1.1 Robot Learning for Visual Tasks

In recent years a lot of research effort has been put into pro-
ducing real-world robot controllers automatically using tech-
niques from the machine learning and optimization research
fields. Engineering robot controllers by hand is difficult for
many reasons, including problems of sensor and actuator noise,
calibration errors, sensitivity of the robot-environment sys-
tem to small changes in starting conditions, the requirement
for real-time behaviour, and the sheer difficulty of humans
‘thinking down’ to the robot’s level. The idea of deriving
controllers for complex tasks automatically from the robot’s
own interaction with its environment is therefore an attractive
one.

While the field has produced many interesting results, much
work in robot learning is subject to the criticism that the tasks
tackled are usually relatively simple. Typically the robots are
equipped with only a few low-bandwidth sensors and actu-
ators and are used in tasks such as obstacle avoidance and
light-following which are robust to small inaccuracies in be-
haviour.

Equipping robots with vision opens up a whole field of
more challenging tasks, and introduces a number of new prob-
lems to be overcome by a learning system. Visual sensors
typically produce enormous amounts of raw data at a very
high rate, and this data is generally difficult to relate unam-
biguously to the physical structure of the scene in front of
the robot. A number of researchers have successfully used
robot learning for visual tasks. Asada et al. (1996), for in-
stance, have used Q-learning to train visually equipped mo-
bile robots to shoot tennis balls through a ‘goal’. Harvey et al.
(1994) have evolved a neural network controller that allows
a gantry robot to find coloured targets using vision. Finally,
Jakobi (1998) has evolved a neural net motion-tracking con-

troller for a one degree of freedom robot head.

1.2 Shaping: Lending a Hand

Any learning system has its limits. In general, the more flexi-
ble and general purpose the learning algorithm, and the fewer
the assumptions made about the nature of the problem, the
harder it is for the learning system to find a solution in a
reasonable time. Many interesting visual tasks are probably
beyond the capabilities of pure general-purpose learning al-
gorithms and it seems clear that for really complicated tasks
the learning system must be assisted by a human designer. In
robot learning, giving assistance in this way is often called
‘shaping’ (Dorigo and Colombetti, 1993, 1998). There are
several different categories of shaping method, but three of
the most important are:

Controller decomposition Controllers for complex tasks can
often be broken down into a hierarchy of smaller mod-
ules. It is often much easier to train these individual
modules separately or sequentially, than to train the
whole controller at once. In robotics, controllers are of-
ten decomposed in a behaviour-based way, with some
modules performing simple sub-tasks, and others coor-
dinating the activation of those modules (e.g. Mahade-
van and Connell, 1992; Dorigo and Colombetti, 1993).

Progressive problem difficulty One important problem faced
by learning robots is the difficulty of ‘getting off the
ground’. At the start of the learning process the robot
will probably behave in a relatively random fashion,
and in some training scenarios this might mean that the
robot gets very little useful feedback on how to behave
correctly. This problem can sometimes be alleviated by
initially training the robot on easier versions of the full
task. Asada et al. (1996) call this ‘learning from easy
missions’.

A fuller taxonomy of shaping methods can be found in
Perkins (1999b); Perkins and Hayes (1996). For more discus-
sion of robot shaping in general see Dorigo and Colombetti
(1998).

2 Motion Tracking

2.1 Task Description

The ‘robot’ used in the experiments described here is actu-
ally a robot ‘head’, equipped with a single camera that can

be moved independently in ‘pan’ and ‘tilt’ directions. Such
robot heads are increasingly common in research laboratories
around the world, and probably the most common task for
which they are used is the task of motion-tracking. We define
this task roughly as ‘keeping the camera pointed at a single
smallish moving object in an otherwise stationary scene’.

Almost all existing motion-tracking controllers have been
carefully programmed by hand. Our goal is to try to learn
how to do this task, based only on scalar evaluations, and then
to see if shaping techniques can be used to make learning the
task easier. The only other work we are aware of that tackles
the same task is that of Jakobi (1998). He has evolved neural
network controllers that are capable of 1-D motion-tracking
(controlling just the pan axis), but the raw video input is heav-
ily pre-processed to make learning the task tractable. 1 In our
work we use less initial pre-processing, and shaping tech-
niques are used instead to make the task tractable. The princi-
pal motivation behind our preference for shaping is that shap-
ing techniques often require only a high-level analysis of the
task (e.g. a top-down decomposition), whereas sensor pre-
processing usually relies on a low-level understanding of the
problem. Perkins (1999b) provides more discussion of this
approach.

2.2 A Simulator for Evolving Real-World Trackers

Evolving controllers for the motion-tracking task would be a
tedious process if carried out directly on the real robot. Al-
though the camera can move quite rapidly, at around 100 Æs�1,
the evolutionary runs presented in this paper would still take
several weeks each to run. The robot head would be unlikely
to survive this much continuous operation! As a result the
controllers are initially evolved in simulation before being
transferred to the real robot. Evolving in simulation has the
very useful additional benefit that we can provide the learning
system with a much more ‘informed’ evaluation mechanism
than is possible in the real world.

Our simulator is designed using a methodology called the
‘radical envelope of noise’ (Jakobi, 1997), which can be sum-
marized as:

� For environmental features that are relevant to the task,
model them as well as possible, and add a small amount
of noise to mask modelling inaccuracies.

� For environmental features that are irrelevant to the
task, model them poorly, and add huge amounts of noise
to prevent the learning system paying any attention to
those features.

In accordance with this philosophy, a visual simulator for
the motion-tracking task was developed. For this task we are
not really interested in the details of the background behind

1The image is first cropped to leave a narrow horizontal strip of interest.
This is then sub-sampled to produce a 32�1 pixel image. Frame differencing
and thresholding then reduce this to a binary image showing the location of
‘rapid’ image change.

the target to be tracked, and so this can be replaced with a
highly variable randomly generated one. The moving target
is coloured in a similar way. Some care was taken to en-
sure that the simulated background shows random variation
at both fine and coarse scales in a similar fashion to the real
world. Figure 1 shows a typical simulated scenes generated
for the motion-tracking task.

The image dimensions are 320 � 240 pixels. All pixels
vary in intensity between 0 and 255. Multiplicative Gaus-
sian noise with � = 1:0; � = 0:02 is used to corrupt pixel
intensity values slightly. The target varies in radius between
4Æ and 10Æ, and moves in the simulated scene with a veloc-
ity between 5 and 20Æs�1, and the simulator runs on a 4Hz
cycle.

It is not necessary to model the background scene in a re-
alistic way. However, it is necessary to model the way in
which the target moves fairly accurately. This was achieved
by basing the imaging model on empirical measurements of
known scenes taken using the real robot head. Building a sim-
ulator using empirical data has previously been suggested by
Miglino et al. (1995). The stepper motors on the robot head
actually allow almost error-free positioning, but the velocity
signals sent to the simulator by the controller are corrupted by
adding multiplicative Gaussian noise with � = 1:0; � = 0:02
to mask image modelling inaccuracies.

3 Evolutionary Details

3.1 The TAG Architecture

Many different learning architectures could be used for learn-
ing visual tasks. For reasons of generality, flexibility, and
ease of use however, we use a variant of genetic programming
(Koza, 1992) called TAG. The TAG architecture is described
fully in Perkins (1999b), but a brief overview of its essential
features is given here.

In contrast to standard GP, the structures evolved by TAG

are general acyclic graphs rather than trees. Evolving graphs
rather than trees allows controllers that use values computed
by sub-graphs more than once to be be expressed in a more
compact and evolvable way than is possible with simple trees.
Several other authors have suggested adding graphs into GP
for similar reasons (Poli, 1996; Teller and Veloso, 1996). TAG

graphs are initially created by constructing a ‘bag’ of ran-
domly chosen GP-style function and terminal nodes. The
number of nodes in the bag is chosen randomly within a cer-
tain range: 10–20 nodes per bag in these experiments. TAG

graphs can have more than one output value (for instance one
output per actuator), and for each required output, a node is
selected from the bag at random to return that value. If the
node is not a terminal node, then further nodes are connected
to its inputs as necessary and this connection process contin-
ues in recursive fashion until there are no nodes in the graph
that need input connections. Nodes may connect to other
nodes that already form part of the graph, but loops are pre-
vented by insisting that no node may connect to a node that

Figure 1: Typical simulator image sequence for the motion-tracking task. The top row of images shows a sequence of three
frames produced by the simulator with the camera stationary. The moving target is very difficult to spot in these images, but can
be seen more clearly in the bottom row of images, which shows the absolute difference between images 1 and 2, and between
images 2 and 3. Note that the images are sub-sampled.

is its ancestor (i.e. its parent, or an ancestor of its parent). In
order to ensure that the process terminates it is necessary that
the bag contains at least one terminal node to start with. At
the end of the connection process, not all nodes are necessar-
ily in use — these unused nodes act as spare genetic material
or ‘introns’ that may be used later.

Traditional GP uses sub-tree crossover as its primary ge-
netic operator. TAG also uses crossover, but the operator must
be modified for use with graphs. For the most part, ‘sub-
graph crossover’ is very similar to sub-tree crossover. Start-
ing with two parents, two offspring graphs are created by
copying. Then, a node is selected in each offspring to act as
an exchange node. To perform crossover, the exchange nodes
are simply swapped between the two graphs, together with
all their descendent nodes (a node is a descendent of another
node if it is a child of that node or a descendent of a child).

The tricky part of sub-graph crossover is deciding what to
do about connections that previously connected into the ex-
changed sub-graphs (other than connections to the exchange
nodes themselves). One obvious answer is just to randomly
reassign such connections, but TAG tries to take a more in-
telligent approach that attempts to preserve structure where
possible. In brief, every node is associated with a fixed ‘tag’
value that is uniquely assigned when that node is first created.
When a node is copied, the copy is given the same tag value.
If a particular sub-graph turns out to be a useful component,
then copies of it will tend to multiply in the population. Each
of those copies will have similar sets of nodes and associ-
ated tags. When TAG is reassigning a connection into an ex-
changed region of nodes, it first checks to see if there are any
nodes present in the newly formed individual that have the
same tag as the node that the connection was previously con-
nected to. If there is, then a connection is made to that node.
If not, then the connection is reassigned randomly. The key

idea is that it is less destructive if connections are reassigned
to structures that are similar to the ones they were previously
connected to.

Offspring can also be produced by mutation. In this case,
a single child is initially generated by copying a single parent.
Then, R nodes are selected at random for mutation, where R
is Poisson-distributed with expected value 2.2 Some types of
node have internal parameters that are ‘micro-mutatable’, and
if such a node is selected, then 90% of the time, one of its pa-
rameters is mutated slightly. In all other cases the node has
one of its input connections reassigned randomly (if applica-
ble), or is itself replaced with a random node.

TAG has a number of other interesting features, principally
the use of a ‘rational allocation of trials’ (RAT) mechanism
(Teller and Andre, 1997) for reducing fitness evaluation time,
but space precludes a fuller description here. See Perkins
(1999b) for details.

Apart from the aforementioned exceptions, TAG is a rel-
atively conventional evolutionary algorithm. It is a ‘steady-
state’ algorithm in that as soon as offspring are generated they
are put back into the evolving population — there is no con-
cept of a generation. TAG maintains a population of size N .
Parents are selected using tournament selection: at each evo-
lutionary step, M individuals are chosen from the population
at random and their fitnesses are compared. The fittest indi-
vidual in the tournament is chosen as one parent, and one of
the remaining individuals is chosen randomly as the other par-
ent. 50% of the time the two parents are bred using crossover.
Only one of the two potential children is actually generated.
The other 50% of the time, mutation is used to derive a single
offspring from the fitter of the two parents. In either case the
offspring replaces the less fit of its parents. This evolutionary

2If R = 0, then R is re-generated.

cycle is repeated a total of T times during a single run. In the
experiments reported here, N = 100, M = 4 and usually,
T = 25000.

3.2 Shaping and Tag

Shaping generally implies an incremental acquisition of be-
haviour with newly learned skills building upon previously
acquired skills. The human trainer must design an incremen-
tal path of increasing competence that the robot is to follow.
Each ‘stage’ along this path or ‘shaping regime’, results in the
acquisition of another unit of competence in some area related
to the overall task. The controller must not forget skills it has
already learned, even if they are not directly relevant to the
current stage of the training process, and it must be able to
combine previously learned skills together to form new, more
complex skills.

The shaping experiments reported here use three basic
frameworks for incremental learning. Note that in practice,
different frameworks may be used at different stages of a
shaping regime.

Single Agent (SA) In the simplest cases, no modification
is made to the basic learning system. At each stage of the
shaping regime, the designer adjusts the evaluation function
and/or environmental constraints as appropriate, and the evolv-
ing TAG population is simply required to adapt to the modi-
fied task as best it can. No provision for preserving previ-
ously learned skills is made, so this technique is only suitable
for regimes where the task does not change qualitatively from
one shaping stage to the next.

Multiple Agent, Fixed Interaction (MAFI) In the next
most complicated case, we develop a controller that consist
of a collection of ‘agents’, each agent being a single evolved
TAG graph, and each being evolved during a single stage of
the shaping regime. At the end of each evolutionary stage, the
best agent in the evolving population is ‘frozen’ and added
into the current controller. In the MAFI framework, the de-
signer ensures that there is no conflict between different agents,
or hand-designs an arbitration system that allows the agents
to work together.

Multiple Agent, Learned Interaction (MALI) Finally we
can consider the case where agents evolved at different stages
may conflict with each other. In this case we require that the
agents learn how to cooperate. We use a simple method called
‘hierarchical evolutionary gating’ (HEG). In the HEG frame-
work, agents that might conflict possess a special additional
real-valued output called the ‘validity’. For an agent to con-
trol an actuator, its validity must be greater than zero. If there
is more than one such agent, then the most recently evolved
agent wins. If no agents are eligible, the actuator assumes a
default value for the current cycle. The validity mechanism

allows an agent to take control if it needs to override previ-
ously evolved agents, and to relinquish control to previously
evolved agents if that is not necessary.

4 Shaping Experiments

4.1 Simulation Runs

In other published work (Perkins, 1999a,b) the benefits of
shaping using progressive problem difficulty and controller
decomposition for a simpler light-tracking task were demon-
strated. Here we apply similar techniques to the harder motion-
tracking task.

4.1.1 Control Runs

Before the shaped experiment, we carried out two control ex-
periments, to see if the task could be learned without shaping.
The first control experiment attempts to evolve a monolithic
controller for a 1-D version of the motion tracking task in
which only the pan axis needs to be controlled. The evolved
controllers consist of single TAG graphs with a single out-
put controlling the camera pan speed. In the second control
experiment we again attempt to evolve a controller without
shaping. This time the full 2-D motion tracking task is used,
and the evolved controllers consist of single TAG graphs, each
with two outputs: one controlling the camera pan speed, one
controlling the camera tilt speed.

Standard GP-style function nodes and terminals were used
for both control experiments, consisting of the standard arith-
metic functions: +, �, �, �, >, neg, sgn and abs; plus
the ephemeral random constant <. � returns 1.0 if its second
argument is zero. > returns 1.0 if its first argument is greater
than its second argument, or 0.0 otherwise. sgn returns 1.0
if its single argument is greater than zero, or -1.0 otherwise.
Random constants are initialized to values between -1.0 and
1.0.

In addition to these familiar functions three additional ter-
minal nodes and three additional functions were introduced
for the tracking task. vis2 provides access to the camera
sensor. It contains five internal parameters that define a rect-
angular ‘receptive field’ in the image. Four parameters de-
fine this rectangle, and the fifth defines a sampling resolution
within that receptive field. vis2 is unusual in that it returns a
2-D array of values which correspond to the absolute change
in intensity value in each of the pixels in the defined recep-
tive field. The arithmetic binary functions described above
are designed to cope with arrays in a sensible fashion. If one
input is scalar and the other is an array, then an array of the
same size as the input array is returned, with each value be-
ing the result of applying the binary function to the scalar and
the corresponding value in the input array. If both inputs are
arrays, then the two arrays are first registered with their cen-
tres as close as possible, and the largest common sub-array
is extracted from each array. The output is then an array of
the same size in which each value is the result of applying the

binary function to the corresponding values in the two input
arrays. In conjunction with the vis2 terminal node, three
simple image processing function nodes are defined: avg,
which returns the mean value of an array; mx, which returns
the first x-moment of the array, and my, which returns the
first y-moment of the array. These functions simply return
their input if passed scalar values. Finally, two terminals to
read the current camera pan and tilt velocity: panspd and
tiltspd.

Note that the vis2 terminal performs frame differencing
automatically. It can also sample the image at range of reso-
lutions, from 2�2 pixels per array element, to 32�32 pixels
per element. This pre-processing was found to be necessary
to make the problem soluble, even with the shaping that was
carried out. Processing arrays of values is computationally
demanding, so the vis2 terminal is prevented from return-
ing arrays with more than 150 elements. This turned out to
make the problem considerably harder than expected.

The fitness function for the motion-tracking task is defined
in terms of the tracking error E:

F = �

nX

t

(1� t)Et (1)

whereEt is the tracking error at time-step t, defined as the
angular offset between the camera ‘straight ahead’ direction
and the target direction. For the 1-D control experiment, only
the horizontal component of this angle is considered. is a
weighting constant, set to 0.5 in these experiments, and n is
the number of time-steps for which the trial is continued —
in these experiments n = 10. Note that the sum is negated to
ensure that higher fitness values are better.

Each evolutionary run lated 50000 tournaments, and each
of the two control experiment was carried out 50 times with
different random number seeds to get good statistics. Figure 2
shows the performance curves derived from these runs. The
graphs show how the tracking error of the best individual in
the population varied throughout the run. The solid curve
shows the median best error over the 50 trials, and the dotted
curves show the 10th and 90th percentile best errors. The
graphs show quite clearly that the best tracking error does not
change from its initial value — the tracking problem is too
hard for the evolutionary system to solve, unassisted.

4.1.2 Shaping Runs

To see whether shaping could be used to make the motion-
tracking problem tractable, a ten-stage shaping regime was
tested. The essential idea behind the regime is to get the con-
troller to first learn how to locate the target in the image, and
only then to learn how to track the target. This is an example
of controller decomposition. The regime also trains the con-
troller to control pan and tilt axes separately, and uses pro-
gressive problem difficulty where appropriate in an attempt
to simplify learning.

For the target-location stages, the controller is required to

signal its estimate of the position of the target by setting two
‘memory units’ to values representing the horizontal and ver-
tical offset of the target relative to the centre of the image. Fit-
ness for these stages is then simply the difference between the
memory unit value and the correct value, in degrees, negated
so that higher fitness values are better. Each fitness trial lasts
for two robot cycles (0.5 sec), at the end of which the mem-
ory units are examined. The same functions and terminals as
used in the control experiments are available to all evolving
agents, except where noted below. The full regime looks like
this:

1 1-D target-location task with targets appearing only in
the leftmost half of the image. The random background
texture is enhanced to make targets ‘easier’ to spot.
Controllers consist of a single agent with an output tar-
geting the horizontal offset memory unit.

2 As stage 1, except that the texture enhancement is re-
moved. The same population of single-agent controllers
continues to evolve (SA framework).

3 1-D target-location task with targets appearing anywhere
in the image. The random background texture is en-
hanced as before. The best agent from stage 2 is frozen
and incorporated into the controller. New evolving agents
have one output targeting the horizontal offset memory
unit and a validity output for conflict resolution (MALI
framework).

4 As stage 3, except that the texture enhancement is re-
moved. The evolving population of second agents con-
tinues to evolve (SA framework).

5 1-D motion-tracking task with targets appearing any-
where in the image. The best agent from stage 4 is
frozen and incorporated into the controller. New evolv-
ing agents have a single output controlling the pan speed
(MAFI framework). They also have access to a new ter-
minal mem0 that can read the horizontal offset memory
unit.

6–9 As stages 1–4 except that training is on the tilt axis
version of the 1-D target-location task. The first three
evolved agents are temporarily disabled and two more
agents are evolved for tilt-axis target location.

10 All previously evolved agents are enabled, and a sixth
agent is evolved on the full 2-D motion-tracking task.
New evolving agents have a single output controlling
the tilt speed and have access to a new terminal mem1
that can read the vertical offset memory unit.

Each stage is 25000 tournaments long. Each stage is re-
peated 20 times with different random number seeds and the
best result from each stage is used as the precursor for 20 runs
of the next stage.

For comparison, a hard-wired motion-tracking controller
was also created. This controller has access to the same raw

0 1 2 3 4 5
4

0

5

10

15

20

25

30

Tournaments

M
in

 T
ra

ck
in

g
E

rr
or

 (
de

g)

(a)

0 1 2 3 4 5
4

0

5

10

15

20

25

30

Tournaments

M
in

 T
ra

ck
in

g
E

rr
or

 (
de

g)

(b)

Figure 2: Performance graphs for the control motion-tracking experiments. (a) 1-D motion-tracking task. (b) 2-D motion-
tracking task.

information as the evolved controller and makes use of simi-
lar functional blocks. It’s basic strategy is to hold the camera
stationary every other frame in order to highlight the moving
target in the difference input image. The centroid of the re-
gion of motion is then located, and appropriate signals sent to
the pan and tilt motors in order to bring this region into the
centre of the image.

Table 1 shows the end-of-run performances from all the 2-
D tracking experiments. The ‘Error’ column shows the mean
tracking error of the best individual seen from each experi-
ment. The hit rate indicates what percentage of the time the
controller kept the target in view for a whole trial. The ‘Adj.
Error’ column gives the mean tracking error of the best in-
dividual on just those cases for which the target was kept in
view.

Controller Error Hit Rate Adj. Error

Unshaped 25:5� 0:6 65.1% 20:3� 0:6

Shaped 16:1� 0:5 90.1% 14:3� 0:3

Hand-coded 1:6� 0:1 99.8% 1:5� 0:03

Table 1: Final performance comparison of the motion-
tracking controllers. All errors given in degrees.

The table shows clearly that the shaped evolved controller
outperforms the unshaped evolved controller, but is itself out-
performed by the hand-coded controller. This result is ana-
lyzed in detail in Section 5.

4.2 Back to Reality

The shaped evolved controller appears to be able to perform
motion-tracking at least some of the time in simulation, but
how does its ability transfer to the real robot?

To answer this question, the shaped controller and and the
hand-coded controller were both transferred to a real robot
head (the one upon which the simulation was based) and tested
in various ways. To get a simple objective comparison, a toy
car racetrack was used. A single car was set to circle a track

at a fairly constant speed and the robot head was positioned
nearby. To make the car more visible a small balloon was at-
tached to the car. The size and speed of the car and balloon in
the image were carefully chosen to match the parameters of
the simulation. Both the evolved and hand-coded controllers
were able to track the car indefinitely. Figure 3 shows a typi-
cal sequence of frames from a robot’s eye view.

Table 2 shows the mean tracking error for each controller
over a typical period of 25 cycles. The error was determined
by hand-locating the approximate centre of the moving tar-
get in each scene and determining the distance to the image
centre. As the table suggests, the evolved and hand-coded
controllers performed comparably on this task.

Controller Error

Shaped 11:8� 1:1

Hand-coded 11:0� 0:9

Table 2: Comparison of real-world performances of evolved
and hand-made motion-tracking controllers.

A subjective comparison between the two controllers in
a variety of other testing environments was also carried out.
Unfortunately here the results were much less impressive. As
soon as the testing situation diverged from the training sit-
uation, e.g. larger or smaller targets, or multiple moving ob-
jects, then the evolved controller failed completely. The hand-
coded controller on the other hand performed fairly robustly
in these other situations and by-and-large was able to track
the main moving object.

5 Analysis and Conclusions

Other work by the author (Perkins, 1999a,b) has shown that
shaping can be used to produce a controller for a light-tracking
task that competes very favourably with a hand-coded con-
troller. The current work demonstrates that motion-tracking
controllers evolved using similar techniques fare less well in
a comparison with hand-coded controllers. The principal rea-

Evolved
Controller

Hand-made
Controller

Figure 3: Typical motion-tracking sequences for the evolved and hand-made controllers.

son for this is that the problem is much harder. Without shap-
ing, the best solution that TAG could find involved just keep-
ing the camera stationary all the time. In comparison, on the
light-tracking task, even unshaped evolved controllers were
able to track lights some of the time. For motion-tracking the
major problem is that any camera motion induces large scale
image motion which swamps any image motion caused by the
moving target. This problem does not exist for light-tracking.
The successful evolved controller learned to hold the camera
stationary every other frame — the same strategy as used by
the hand-coded controller. This was achieved despite the fact
that the body of the evolved controller is entirely reactive. 3

The subjective real-world comparison also reveals a poten-
tial danger of simulation-to-reality transfer, even when care-
fully designed simulators are used. The evolved controller
worked reasonably well while the testing environment was
similar to the training environment, but it extrapolated very
unintuitively to unseen situations. In contrast, the hand-coded
controller, which was designed with an eye to likely extrapo-
lations, behaved well in a wide variety of situations.

On the positive side, the results provide further evidence
that this form of shaping (progressive problem difficulty and
controller decomposition) can help an evolutionary system
develop robot controllers that are impossible to evolve with-
out shaping. It has been shown before (e.g. Dorigo and
Colombetti, 1993) that controller decomposition with differ-
ent modules communicating in a ‘control flow’ way can ac-
celerate robot learning. Our research goes further in showing
that controller decomposition with ‘data flow’ interaction is
also useful.

Acknowledgements

This work was carried out while the author was at the De-
partment of Artificial Intelligence, University of Edinburgh,
Scotland.

Bibliography

Asada, M., Noda, S., Tawaratsumida, S., and Hosoda, K.
(1996). Purposive behaviour acquisition for a real robot
by vision-based reinforcement learning. Machine Learn-
ing, 23:279–303.

Dorigo, M. and Colombetti, M. (1993). Robot shaping: De-
veloping situated agents through learning. Technical Re-
port TR-92-040, International Computer Science Institute,
Berkley, CA 94704.

Dorigo, M. and Colombetti, M. (1998). Robot Shap-
ing: An Experiment in Behaviour Engineering. MIT
Press/Bradford Books.

Harvey, I., Husbands, P., and Cliff, D. (1994). Seeing the
light: Artificial evolution, real vision. In Cliff, D., Meyer,

3The two state cycle is in fact achieved by monitoring the panspd and
tiltspd inputs which reflect the previous cycle’s speed commands.

J.-A., and Wilson, S., editors, From Animals to Animats 3:
Proc. 3rd Int. Conf. Simulation of Adaptive Behavior. MIT
Press.

Jakobi, N. (1997). Evolutionary robotics and the radical en-
velope of noise hypothesis. Adaptive Behavior, 6:325–368.

Jakobi, N. (1998). Evolving motion-tracking behaviour for a
panning camera head. In Pfeifer, R., Blumberg, B., Meyer,
J.-A., and Wilson, S., editors, From Animals to Animats 5:
Proc. 5th Int. Conf. Simulation of Adaptive Behavior. MIT
Press.

Koza, J. R. (1992). Genetic programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press.

Mahadevan, S. and Connell, J. (1992). Automatic program-
ming of behaviour-based robots using reinforcement learn-
ing. Artificial Intelligence, 55:311–365.

Miglino, O., Lund, H., and Nolfi, S. (1995). Evolving mobile
robots in simulated and real environments. Artifical Life,
2(4):417–434.

Perkins, S. (1999a). Evolving effective visual tracking
through shaping. In W. Banzhaf et al., editor, GECCO 99:
Proc. Genetic and Evolutionary Computation Conference,
San Francisco, CA. Morgan Kaufmann. July 13–17, Or-
lando, Florida.

Perkins, S. (1999b). Incremental Acquisition of Com-
plex Visual Behaviour using Genetic Programming
and Robot Shaping. PhD thesis, Dept. of Arti-
ficial Intelligence, University of Edinburgh, 5 For-
rest Hill, Edinburgh, Scotland. Available from
http://www.dai.ed.ac.uk/students/simonpe/pubs.html.

Perkins, S. and Hayes, G. (1996). Robot shaping — prin-
ciples, methods and architectures. Technical Report 795,
Dept. of Artificial Intelligence, Univ. of Edinburgh, Scot-
land.

Poli, R. (1996). Parallel distributed genetic programming.
Technical Report CSRP-96-15, School of Computer Sci-
ence, University of Birmingham, UK.

Teller, A. and Andre, D. (1997). Automatically choosing the
number of fitness cases: The rational allocation of trials. In
Koza et al., editor, Proc. Genetic Programming ’97. Mor-
gan Kaufmann.

Teller, A. and Veloso, M. (1996). PADO: Learning tree-
structured algorithms for orchestration into an object
recognition system. Technical report, Department of Com-
puter Science, CMU, Pittsburgh, PA.

